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Abstract

The rate of information collection generated by metagenomics is uncoupled with its

meaningful ecological interpretation. New analytical approaches based on functional

trait-based ecology may help to bridge this gap and extend the trait approach to the

community level in vast and complex environmental genetic data sets. Here, we explored

a set of community traits that range from nucleotidic to genomic properties in 53

metagenomic aquatic samples from the Global Ocean Sampling (GOS) expedition. We

found significant differences between the community profile derived from the

commonly used 16S rRNA gene and from the functional trait set. The traits proved to

be valuable ecological markers by discriminating between marine ecosystems (coastal vs.

open ocean) and between oceans (Atlantic vs. Indian vs. Pacific). Intertrait relationships

were also assessed, and we propose some that could be further used as habitat

descriptors or indicators of artefacts during sample processing. Overall, the approach

presented here may help to interpret metagenomics data to gain a full understanding of

microbial community patterns in a rigorous ecological framework.
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Introduction

In the field of community ecology, there is a resurging

interest in understanding biogeographical patterns

based on functional traits (i.e. biological characteristics

linked to fitness; McGill et al. 2006; Kraft et al. 2008).

The study of covarying traits in an environmental con-

text is crucial to understand the ecological strategies

that underlie community patterns (Green et al. 2008). In

parallel, the new field of metagenomics is challenging

the scientific community with an astonishing amount of

complex data that intersect the disciplines of microbiol-

ogy, genetics, ecology and bioinformatics (Handelsman

2004). Despite some computational advances, the analy-

sis of community genomics data within a meaningful

ecological framework remains an elusive goal (Raes

et al. 2007a; Kunin et al. 2008). Metagenomics, however,
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produces data very suitable for extending traditional

species-level functional-trait analyses (Wright et al.

2004) to the community level, resulting in an ecological

approach to analysing metagenomic data that circum-

vent the confounding effects of horizontal gene transfer

present at lower levels of organization (e.g. at the spe-

cies or population level).

Recently, the Global Ocean Sampling (GOS) expedi-

tion (Rusch et al. 2007) has generated the largest marine

metagenomic data set ever sampled along an environ-

mental gradient, with approximately eight billion nucle-

otides present in more than 7 million DNA fragments.

However, few attempts have been made to analyse this

data within an ecological framework (Raes et al. 2011).

A synergy between ecology and metagenomics may

help bridge this gap, by providing theoretical and ana-

lytical tools that could unveil microbial community pat-

terns and the processes that underlie them (Prosser

et al. 2007).
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To achieve this objective, we have characterized a set

of community traits in 53 GOS metagenomic samples

taken from the near-surface marine planktonic environ-

ment. First, we tested the performance of each trait as a

taxonomic, functional and habitat surrogate, respec-

tively. Second, we compared the whole community pro-

file derived from the commonly used 16S rRNA gene

marker and from the functional trait set. Finally, we

assessed intertrait relationships that could be further

used as indicators of functional anomalies and ⁄ or for

detection of artefacts during sample processing. Overall,

the approach presented here is an important step

towards developing taxonomic and functional analysis

of metagenomic data in a rigorous ecological frame-

work and to provide insights into community ecology

beyond purely descriptive studies.
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Materials and methods

Global Ocean Sampling metagenomic data

Unassembled genomic fragments (reads) from the GOS

expedition (Rusch et al. 2007) were downloaded from

the CAMERA database (Seshadri et al. 2007). We selected

53 surface water samples from picoplankton collected

within the same size fraction (0.1–0.8 lm), and free of

bacterial contamination during sample handling (De-

Long 2005; see detailed information in Table S1, Sup-

porting information). Based on current knowledge

regarding the spatial and temporal scales of variation in

marine microbial communities, a GOS sample repre-

sents approximately a week temporally, a few kilome-

tres horizontally and a few metres vertically (Fuhrman

2009). The analysed metagenomic data set comprised

approximately 8000 Mb contained in approximately 5

million reads.
T
a

b
le

1
S

u
m

m
ar

y
o

f
th

e
m

et
ag

en
o

m
ic

co
m

m
u

n
it

y
tr

ai
ts

e

T
ra

it
M

ea
n

±
S

D
P

C
A

1*
A

u
(M

G
C

co
n

te
n

t
37

.7
±

4.
2

0
V

ar
ia

n
ce

o
f

G
C

co
n

te
n

t
82

.1
7

±
23

.3
0

D
in

u
cl

eo
ti

d
es

79
.1
%

*
0

E
ff

ec
ti

v
e

g
en

o
m

e
si

ze
1.

8
±

0.
3

0
N

u
m

b
er

o
f

rR
N

A
⁄g

en
o

m
e

2.
7

±
0.

6
0

N
u

m
b

er
o

f
g

en
es

⁄g
en

o
m

e
13

62
±

26
0

0
C

o
d

o
n

s
95

.2
%

*
0

A
m

in
o

ac
id

s
95

.5
%

*
0

A
ci

d
ic

to
b

as
ic

am
in

o
ac

id
s

ra
ti

o
0.

86
±

0.
02

0
%

o
f

T
ra

n
sc

ri
p

ti
o

n
al

fa
ct

o
rs

5Æ
10

)
3

±
1Æ

10
)

3
)

0
%

o
f

cl
as

si
fi

ed
re

ad
s

65
±

5
0

F
u

n
ct

io
n

al
co

n
te

n
t

21
.6
%

*
0

F
u

n
ct

io
n

al
d

iv
er

si
ty

5.
5

±
0.

04
0

T
ax

o
n

o
m

ic
co

n
te

n
t

62
.6
%

*
0

T
ax

o
n

o
m

ic
d

iv
er

si
ty

0.
86

±
0.

13
0

A
ll

co
m

m
u

n
it

y
tr

ai
ts

40
.1
%

*
0

M
ar

k
ed

w
it

h
an

as
te

ri
sk

,
th

e
p

er
ce

n
ta

g
e

o
f

v
ar

ia
ti

o
n

ex
p

la

re
p

o
rt

ed
P

-v
al

u
es

.
In

b
o

ld
,

P
-v

al
u

es
<

0.
01

.
P

-v
al

u
es

o
f

p
ar
Community traits calculation

Up to 15 traits were calculated with different level of

complexity (see Table 1). First, three simple traits were

calculated. Custom Perl scripts were used to calculate

the GC content and its variance, whereas the odds ratio

of dinucleotides was measured as previously described

(Willner et al. 2009). Dinucleotides have been shown to

perform better than tri- and tetranucleotides for expla-

nation of habitat differences (Willner et al. 2009).

Next, we extended our approach to three additional

traits that relied on the estimation of the number of

genomes present in each metagenome. For the assess-

ment of the effective genome size (EGS; Raes et al.

2007b), the number of rRNA genes per genome (How-

ard et al. 2008) and the number of genes per genome

(Biers et al. 2009), we targeted 35 protein markers (see
� 2011 Blackwell Publishing Ltd
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detailed information in Table S2, Supporting informa-

tion) known to exist as single-copy genes, to be univer-

sally distributed along the tree of life, and that are

likely recalcitrant to lateral gene transfer (Ciccarelli

et al. 2006; Raes et al. 2007b; Wu & Eisen 2008).

Finally, a set of traits based on the functional annota-

tion of the metagenomic reads was calculated. Auto-

matic annotation of the reads and protein prediction

were carried out using MG-RAST (Meyer et al. 2008),

which removed strict duplicate reads. Codon and

amino acid composition of the predicted proteins were

calculated using the program cusp bundled in the

EMBOSS package (Rice et al. 2000). The acidic (i.e. glu-

tamic and aspartic acids) to basic (i.e. lysine, histidine

and arginine) amino acids ratio (AB) was calculated fol-

lowing Rhodes et al. (2010). Functional content was

based on the comparison against the SEED platform

and reported at the subsystem level (Dinsdale et al.

2008). The SEED subsystems are manually curated col-

lections of proteins with related functions (Overbeek

et al. 2005). From the functional annotation, we used as

traits the percentage of transcriptional factors (TF) and

the percentage of SEED subsystems classified reads,

both calculated over the reads predicted to be protein

coding. Taxonomic content based on 16S rRNA genes

was determined by comparing the reads against the

Greengenes 16S rRNA gene database and reported at

the order level (DeSantis et al. 2006). For each metage-

nome, the same parameters were used to ensure the

congruity of subsequent analysis. Diversity of the taxo-

nomic and functional contents was calculated using the

Shannon index. To correct for unequal sample size, we

report the mean of 1000 randomized subsamples.

Complex traits (i.e. taxonomic content, dinucleotides,

codons, amino acids and functional content; see

Table 1) were transformed by considering the projec-

tion on the first component of a principal component

analysis (PCA).
Statistical analyses

To estimate the degree of spatial autocorrelation of the

community traits, Moran’s coefficient (I) was calculated.

Partial Mantel tests were used to determine the correla-

tion between the similarity of each trait and the taxo-

nomic or functional community similarity. Additionally,

analysis of similarities (ANOSIM) was used to test for sig-

nificant differences within marine ecosystems (coastal

vs. open ocean) and between oceans (Atlantic vs. Indian

vs. Pacific). The ANOSIM R statistic is based on the differ-

ence of mean dissimilarity ranks between groups and

within groups and ranges from 0 (no separation) to 1

(complete separation; Clarke 1993). To test for differ-

ences between habitats, PERmutational Multivariate
� 2011 Blackwell Publishing Ltd
ANOVA (PERMANOVA) was used (McArdle & Anderson

2001). To represent taxonomic and functional commu-

nity similarity, we ran nonmetric multidimensional scal-

ing using the Bray–Curtis distance metric after

Hellinger standardization (Legendre & Gallagher 2001).

All statistical analyses were carried out in the R envi-

ronment (http://www.r-project.org) using the ape (Par-

adis et al. 2004) and vegan (Oksanen et al. 2008)

packages.
Results and discussion

A more complete understanding of microbial processes

and patterns is essential to understand ecosystem func-

tions and to predict the Earth’s response to global

change (Fuhrman 2009). Community genomics is reveal-

ing an unprecedented level of microbial diversity and

metabolic novelty in the world’s oceans and is the most

comprehensive approach currently used to reveal

microbial processes and patterns in environmental sam-

ples (Handelsman 2004). To more completely under-

stand these data in an ecological context, we analysed

community-level functional traits in 53 selected metage-

nomic samples from the GOS expedition (Rusch et al.

2007; Table S1, Supporting information). The analyses

produced (i) a defined set of community traits that

serve as functional and ecological descriptors of

the metagenomic samples; (ii) consistent relationships

between traits that may be used for detection of irregu-

larities and ⁄ or methodological artefacts and (iii) a dif-

ferent view on microbial communities based either on

the taxonomic or on the functional content.
Community traits as functional descriptors
of metagenomic samples

We estimated 15 community traits for each metagenom-

ic sample (Table 1). To assess the performance of each

of the selected traits as a community descriptor, we first

tested their spatial autocorrelation. Most of the traits

were positively spatially autocorrelated (i.e. closer com-

munities tended to have more similar values), as

expected for descriptors of ecological change (i.e.

because the environment tends to be spatially autocor-

related). Taxonomic and functional composition showed

the highest autocorrelation values (Table 1). Although

both traits are subject to database scan biases, they sum-

marize two key features of biological communities, that

is, community identity and metabolic potential, respec-

tively (Raes et al. 2007a).

The accuracy of the community traits used as

descriptors of microbial metagenomes can be poten-

tially related both to a truly functional cause (i.e. differ-

ent metabolic potentials among different microbial
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assemblages) or just an effect of community composi-

tion (i.e. different taxonomic ⁄ phylogenetic groups pres-

ent in different samples). To distinguish these potential

influences, we calculated the correlation between sam-

ple similarity for each trait with the taxonomic and the

functional composition of each sample (separating the

effects of possible intermatrix correlations with partial

Mantel tests). Most of the traits showed a significant

correlation with functional composition rather than tax-

onomic composition (Table 1), consistent with the

hypothesis that they reflect functional differences, rather

than just taxonomic differences, among samples. Specif-

ically, GC content, dinucleotides and codon and amino

acid compositions (all of them highly correlated)

showed the strongest correlation (Table 1). Although

nucleotidic signatures have been proven useful for the

taxonomic assignment of individual genomic fragments

(Teeling et al. 2004), some signatures have been success-

fully applied at the community level for ecological and

environmental classification (Willner et al. 2009; Rhodes

et al. 2010). For the taxonomic matrix, only taxonomic

diversity and the number of genes per genome showed

a significant (although weak) correlation (Table 1).

Overall, the explored community traits were more cor-

related with the functional composition (rM = 0.58) than

with the taxonomic composition (rM = 0.42).

We tested the ability of each trait to differentiate

between coastal and pelagic communities and among

communities from different oceans (Atlantic vs. Indian

vs. Pacific). A subset of the community traits (GC con-

tent, dinucleotides, codon, amino acids, AB ratio and

functional content) was able to clearly distinguish

between coastal and open-ocean habitats (Table 1). A

different subset of traits (number of rRNA per genome,

number of genes per genome, taxonomic diversity and

taxonomic composition) was effective at distinguishing

oceanic origin (Table 1). In general, the community

traits distinguished slightly better between coastal and

pelagic samples (ANOSIM R = 0.33) than the taxonomic

composition derived from the commonly used 16S

rRNA gene marker (ANOSIM R = 0.31). Nevertheless, tax-

onomic composition was the best marker of oceanic ori-

gin (ANOSIM R = 0.52).
Differences between the taxonomic and functional
contents

Sequence identity of the 16S rRNA gene has been

shown to be related to the overall genomic content in

individual genomes (Zaneveld et al. 2010). However,

we observed substantial differences between taxonomic

(based on the 16S rRNA gene) and functional (based on

SEED subsystems) contents in our samples (Mantel test:

rM = 0.36, P-value < 0.01; Fig. 1). Taxonomic content
primarily separated the nonoceanic samples (i.e. hypers-

aline, mangrove, freshwater and estuaries) from the

marine plankton (Fig. 1A), while functional content dis-

tinguished communities with different metabolic poten-

tials (Fig. 1B). The single sample from a harbour

(GS149) provides a striking example of how taxonomic

community composition and functional content can pro-

vide different perspectives of the same complex micro-

bial assemblage. While taxonomically the harbour

metagenome was closer to other marine samples, in

terms of its functional content it was a unique sample

separated from the rest (Fig. 1A, B). This observation

may suggest new research on genomic adaptation in

polluted environments and on the dynamic processes

that shape microbial communities. For microbial ecolo-

gists, it is still an unsolved question whether communi-

ties adapt more efficiently modifying the genomic

repertoire of their members (as has been shown under

laboratory conditions; Sniegowski et al. 1997) or chang-

ing the taxonomic composition by ecological processes

such as immigration and dispersal.

Estuaries are productive habitats at the interface of

terrestrial and oceanic ecosystems where a mixture of

freshwater and marine-specific microorganisms is pres-

ent (Bouvier & del Giorgio 2002; Crump et al. 2004).

Estuarine samples GS11 (Delaware Bay) and GS12

(Chesapeake Bay) were intermediate between the single

freshwater metagenomic sample (GS20) and the marine

samples, both taxonomically and functionally (Fig. 1A,

B). Although GS11 and GS12 samples differed in tem-

perature (11 and 3.2 �C, respectively) and chlorophyll

concentration (4.8 and 21 mg ⁄ m)3, respectively;

Table S1, Supporting information), they were more sim-

ilar in composition to each other than to the other estu-

ary sample (GS06 from the Bay of Fundy), which was

more similar to other marine metagenomes (Fig. 1A, B).

The temperature and chlorophyll concentration of sam-

ple GS06 were very similar to sample GS11. However,

other relevant environmental data such as salinity, a

key parameter known to greatly affect microbial com-

munity composition (Lozupone & Knight 2007; Auguet

et al. 2010), have not been reported for the GOS sam-

ples. Thus, we cannot rule out the possible effects of

other unmeasured parameters that may explain the

observed patterns in community composition. Addition-

ally, GS06 is an estuary sample that also consistently

differed in other community traits (Fig. 2); for example,

it had a very low GC content variance (Fig. 3B) com-

pared with the other estuary samples.

We observed that both functional and taxonomic

community patterns significantly varied between

coastal and open ocean waters (ANOSIM R = 0.25 and

0.31, respectively). Coastal and open-ocean sites con-

tain water masses with contrasting physicochemical
� 2011 Blackwell Publishing Ltd
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characteristics, and several studies have shown differ-

ent microbial composition (Acinas et al. 1997; Baltar

et al. 2008). Although the ANOSIM R values were simi-

lar, functional content clustered all the open-ocean

samples together (Fig. 1C, D). Taxonomic content dif-

ferentiated better among oceans (ANOSIM R = 0.52) than

the functional content (R = 0.19). Taxonomically, the
� 2011 Blackwell Publishing Ltd
samples from the Pacific Ocean were more heteroge-

neous (a few samples were more similar to the Atlan-

tic and others to the Indian Ocean), while functionally,

the Atlantic Ocean was the most heterogeneous

(Fig. 1E, F; heterogeneous groups of samples show

comparable mean rank of dissimilarities to the

‘Between’ category).
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Relationships among community traits

We used a PCA to determine the relationship among

the community traits and to test how well they could

discriminate among samples from different habitats

(Fig. 2). Previous work on bacterial (Lozupone &

Knight 2007) and archaeal (Auguet et al. 2010) commu-

nity patterns based on the 16S rRNA gene indicated

salinity as the major driving force at the global scale. In

the ordination plot of community traits, the hypersaline

(GS33) and freshwater (GS20) samples clustered away

from the remaining samples (Fig. 2). The community

traits distinguished better among samples from differ-

ent habitats (PERMANOVA: r2 = 0.49, P-value < 0.001) than

taxonomic composition based on the 16S rRNA gene

(PERMANOVA: r2 = 0.40, P-value < 0.001).

Assessing bivariate relationships may also help to

define ecological strategies across community axes of

variation (Wright et al. 2004). All bivariate Spearman’s

rank correlations between community traits are detailed

in Table S3, Supporting information. A few noteworthy

outliers deserve further attention (Fig. 3). Although

a positive relationship (Spearman’s q = 0.78, P-value

< 0.01) between the GC content and its variance was

detected as a general trend (Fig. 3B), the hypersaline

sample (GS33) clearly deviated, showing a high GC

content with low variance (Fig. 3B). This may reflect a

constraining effect of extreme environments at the com-

munity level captured in the nucleotide composition, in
agreement with the content in the individual genomes

reported for hypersaline inhabitants such as the

Sphingobacteria Salinibacter ruber (% GC = 66.1) and the

Euryarchaeota Haloquadratum walsbyi (% GC = 47.9).

Further investigations are needed to confirm whether or

not this is specifically related to salinity or it can be

extrapolated to other extreme environments such as

hydrothermal vents or hot springs. Initial analyses

using statistical physics methods point to a significant

effect of the ecological lifestyle and the composition of

functional genes on long-range correlation structure in

microbial genomes (Garcia et al. 2008, 2011). Overall,

the GC content appeared as a very convenient parame-

ter for initial exploration of metagenomic samples

(Foerstner et al. 2005) owing to its straightforward

calculation and higher correlation with other properties

at higher organizational levels such as dinucleotides,

codons, amino acids and functional content (as already

known for bacterial genomes) because of the highly

dependence on nucleotidic composition (Binnewies

et al. 2006; see Table S3, Supporting information, and

Fig. 3A for an example of correlation with the amino

acid composition).

A general negative trend (Spearman’s q = )0.60,

P-value < 0.01) between the per cent of TF and EGS

(Raes et al. 2007b) was observed (Fig. 3C). It has been

shown that the number of genes in functional categories

scales as a power law of the genome size (van Nimwe-

gen 2003). The freshwater sample (GS20) appeared as

an outlier, with a large proportion of TF relative to the

remaining metagenomic samples (Fig. 3C). It has been

proposed that TF could be an indicator of environmen-

tal variability because transcription factors are more

strongly selected in variable than in constant environ-

ments (Parter et al. 2007). Lakes are small closed

systems, highly diverse and more sensitive to environ-

mental changes than the ocean, and thus promoters of

higher microbial diversity (Auguet et al. 2010; Barberán

& Casamayor 2010, 2011; Barberán et al. 2011). More

metagenomic samples from different environments and

particularly, freshwater samples are certainly needed to

confirm this observation.

Another interesting relationship that still needs to be

fully explained was the lower percentage of classified

reads observed in metagenomic samples with bigger

EGS (Fig. 3D; Spearman’s q = )0.86, P-value < 0.01).

This may result from a truly functional relationship or to

sampling bias (the genomes available in public databases

may under-represent microorganisms with bigger ge-

nomes and larger genomes contain more orphan genes;

Skovgaard et al. 2001) or to larger percentage of picoeuk-

aryotes or phages, which are much less characterized.

Finally, rRNA copy number is a trait that had previ-

ously attracted considerable attention because it reflects
� 2011 Blackwell Publishing Ltd
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ecological strategies directly related to succession (Klap-

penbach et al. 2000; Fierer et al. 2007). At the commu-

nity level, however, the trait with the highest

correlation with rRNA copy number was the ratio of

AB amino acids (Spearman’s q = 0.50, P-value < 0.01).

New experimental studies should explore how rRNA

copy number scales from the population to the commu-

nity level and how is affected by the environment.
Final conclusions

Overall, the novel approach presented here may help to

bridge the gap that exists between the disciplines of

general ecology and microbial ecology. The recently

developed methodology of metagenomics and trait-
� 2011 Blackwell Publishing Ltd
based community ecology seems totally compatible and

useful for the ecological analysis of complex communi-

ties of microorganisms. Although trait-based

approaches to microorganisms are largely unexplored

(but see Litchman 2008; Green et al. 2008; for recent

reviews), conserved properties at the molecular level

(i.e. single-copy genes; Ciccarelli et al. 2006; Wu & Eisen

2008) and gene length (Xu et al. 2006) serve as anchors

to extend the trait approach to the community level in

complex environmental genetic data sets.
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FPU predoctoral scholarship program and EOC labora-

tory by grants PIRENA CGL2009-13318 from the Span-

ish Ministerio de Ciencia e Innovación (MICINN) and

the EU-COST Action number ES1103: Microbial Ecology

& The Earth System: Collaborating for Insight and Suc-

cess with the new generation of sequencing tools

(CISME).
References

Acinas SG, Rodriguez-Valera F, Pedrós-Alió C (1997) Spatial
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